Vehicular Networks

Alison Chaiken alison@she-devel.com Presented to the UCSC Extension course "Networking Fundamentals" Aug 9, 2021

Vehicular Networks

Common in automated systems and robotics:

- Precision Timing Protocol (IEEE 1588), to sync clocks of hosts
- Time-Sensitive Networking (IEEE 802.1 and 1722), to prioritize critical messages
 - CAN or Internet payload
- CV2X and DSRC wireless (not 802.11)
- Controller Area Network

Each vehicle is an Autonomous System.

Motivation: Vehicular Subnetworks

- Different bus speeds and cabling.
- Different security domains.
 - Problem: interconnection of various domains.
 - Example: driver displays with brake and music-player info.
- CAN gateways interconnect subnetworks.

Courtesy Microchip

Presentation				
Session	1	Logical Link Control (LLC)		
Transport	1	- Acceptance filtering		
Network	1	 Overload notification Recovery management 		
Data Link		Medium Access Control (MAC)		
Physical		 Data encapsulation/decapsulation Frame coding (stuffing/de-stuffing) 	Defined by	CAN Controller
	1, 1,	 Error detection/signaling Serialization/deserialization 		
	`\	Physical Signaling - Bit encoding/decoding - Bit timing/synchronization	ISO11898	
	```	Physical Medium Attachment - Driver/receiver characteristics		Transceiver MCP2551
	\	Medium Dependent Interface		
	١,	- Connectors/wires		

### **Courtesy Microchip**



### CAN Clock



From Understanding and Using the Controller Area Network Communication Protocol

# **Bus Arbitration: CSMA/Collision Resolution**



#### From

Understanding and Using the Controller Area Network Communication Protocol

# CAN Data Frame Basics

- 11- or 29-bit ID determined by "claiming" procedure.
- Messages are acknowledged (like WiFi).
- Protocol supports Remote Request and Error frames.
- Classic CAN: 8B MTU, up to 1 Mb/s.
- CAN FD: 64B MTU, up to 5 Mb/s.
- All messages are broadcast: connectionless.
- HW filters determine which messages an ECU (electronic control unit) processes.

### **Renesas Gateway Routing: static packet filtering**



### <u>Summary</u>

- Like Ethernet and IP, is old but evergreen.
- Differs from TCP/IP at every protocol layer.
- CAN classic and CAN FD are PHY and Link Layer protos.
- High layers have many standards and vendors.
- Wide application in vehicles, robotics, industrial applications, agriculture . . .

#!/bin/bash
set -e
set -u
echo "****Existing networks before VCAN addition****"
ip link show
echo "************************************
echo ""
# tell Linux about virtual CAN nodes: necessary one time
#sudo ip link add type vcan
sudo ip link add dev vcan0 type vcan
sudo ip link set up vcan0
echo "****Networks after VCAN addition****"
ip link show
echo "************************************
echo ""

Then \$ cangen -n 5 -m

#!/bin/bash set -e set -u count=\$(ip link show | grep vcan | wc -l) echo "Removing \${count} vcan devices" echo "" while (( --count > -1 )); do echo "removing vcan\${count}" sudo ip link del dev vcan\${count} echo "" done echo "****Removed vcan devices:****" ip addr list 

### Example: railroad control system



## Older image of passenger vehicle network



# CANopen and ISO-TP provide higher levels



Example: railroad gateway