

Not breaking userspace: the evolving Linux ABI

Alison Chaiken
Southern California Linux Expo 2022

alison@she-devel.com

Slides: http://she-devel.com/Chaiken_LinuxABI.pdf

Blue text indicates hyperlinks.

mailto:alison@she-devel.com
http://she-devel.com/
https://creativecommons.org/licenses/by-sa/2.5/

 2

Why do kernel upgrades
make users nervous?

 3

Contents

● What is an ABI and what is Linux’s?
● Why does it matter?

– 64-bit time (Y2038)
– Priority inversions and robotics
– Writing and maintaining log monitors
– Mounting old filesystems
– Mixing BPF programs and udev rules

● How to avoid ABI breaks
● Summary

 4

What is an Application Binary Interface?

● Library headers and documentation are the API.
● For C programs in general:

– return types of functions;
– parameter lists of functions;
– layout of structs
– meaning, range or ordering of enums.

● Lack of “name mangling” in C is a problem.

https://thephd.dev/to-save-c-we-must-save-abi-fixing-c-function-abi

 5

ABI Guarantees are a Contract

compiler

libc
(syscalls)

userspace
 (ELF)

Linux
kernel

https://thephd.dev/to-save-c-we-must-save-abi-fixing-c-function-abi

 6

The Linux Kernel Warranty

 7

 8

Y2038 and 64-bit time

tin
yu

rl.
co

m
/m

w
94

kt
pw

 9

32-bit IoT devices have a long service life

Disclaimer: these devices may not run Linux, or be 64-bit, or already updated.

 10

Good News: Kernel and Glibc are ready!

https://www.phoronix.com/scan.php?page=news_item&px=Glibc-More-Y2038-Work
https://www.phoronix.com/scan.php?page=news_item&px=Glibc-More-Y2038-Work

 11

Two bad choices for distros with 32-bit arches

A. complete set of 32- and
64-bit-time packages;

OR

B. distinct 32- and 64-bit-time
images: i386 and i386t

https://tinyurl.com/mryr56ee

https://groups.google.com/g/linux.debian.ports.arm/c/_KBFSz4YRZs

 12

Servers 1, Robots 0

 13

Priority inversion occurs when L-prio thread holds
a lock that H-prio thread needs

Priority

Time

Lo-prio
takes
lock

Hi-prio
needs
lock

https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/pi

 14

Priority Inheritance in Realtime Kernel Boosts the
L-prio thread temporarily

Vital for userspace tasks as well as kernel!

Time

Priority

Hi-prio
needs
lock

Lo-prio
takes
lock

https://wiki.linuxfoundation.org/realtime/documentation/technical_basics/pi

 15

Problem: glibc threads do not support PI

Bug report posted in 2010; still “NEW” in 2022.

https://sourceware.org/bugzilla/show_bug.cgi?id=11588

 16

Fix Requires an ABI Break

Either:
● a syscall must take an additional argument;

-or-
● a function arg (the “futex word”) must change from

32- to 64-bit.

 17

Robotics projects need a different pthread library

tin
yu

rl.
co

m
/2

p9
9d

ta
n,

 h
ttp

s:
//t

in
yu

rl.
co

m
/2

rm
m

m
ba

n

glibc

librtpi

Or an entirely different
libc!musl

https://github.com/dvhart/librtpi#readme
https://musl.libc.org/

 18

What is in the Linux Kernel Stable ABI?

Advertised: ELF, /proc, /sys and device-tree.

What about :
● Devices in /dev?
● printk output (dmesg)?
● Bootargs (cmdline)?
● Module params?
● Netlink sockets?

● Tracepoints?
● Valid BPF programs?
● Filesystem metadata?
● Meaning of constants

in headers?

??

?
?

?

?

??

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

 19

YOU
lose!

You broke
my ABI!

sysfs
or
procfs?

YOU
win!

Ye
s!

No

You are a Developer:
“I want to debug and optimize”.

You are a User:
“I want it to just work!”

Developers are not covered by the Warranty

 20

dmesg, GDB and log monitors

 21

Threading Kernel Log Messages

https://lkml.org/lkml/2018/11/24/180

 22

And then fix GDB

https://lkml.org/lkml/2019/9/25/409

 23

Ye
s!

YOU
lose!

You broke
my ABI!

in-tree
userspace

tool?

sysfs
or
procfs?

YOU
win!

Ye
s!

No

No

 24

Kernel ABI Stability Checklist
● ELF format: yes, /proc: yes, /sys: yes†

● Device files in dev? (not /dev/kmsg)
● printk output (dmesg)?
● Filesystem metadata?
● Valid BPF programs?
● Tracepoints?
● Bootargs (cmdline)?
● Module parameters?

†except /sys/kernel/debug, /sys/kernel/btf . . .

 25

Mounting Old Filesystems

 26

Will old filesystems mount with new kernels?

Manipulating FS metadata with custom tool relies on
 Undefined Behavior.

“I was under the impression
that mounting existing FSs
fell under the scope of the
kernel⇔userspace
boundary”

it's not just about
"whatever the kernel
happens to accept". It
should also be, "was it
generated using an
official version of the
userspace tools",

https://lwn.net/Articles/833696/

 27

ABI Contract holds if official userspace tools are used

libc: mount

Linux
kernel

What about FS from Windows, iOS, BSD?

userspace:
e2fsprogs,
zfsutils, etc.

 28

Kernel ABI Stability Checklist

● ELF format: yes, /proc: yes, /sys: yes†

● Device files in dev? (not /dev/kmsg)
● printk output (dmesg)?
● Filesystem metadata? only with official tools
● Valid BPF programs?
● Bootargs (cmdline)?
● Module parameters?
● Tracepoints?

†except /sys/kernel/debug, /sys/kernel/btf . . .

 29

Are BPF Programs
Part of Stable ABI?

 30

BPF’s ABI Guarantee

Controversy: can an ordinary user tool like a udev
rule depend on a developer tool like bpftrace?

https://docs.kernel.org/bpf/bpf_design_QA.html#q-does-bpf-have-a-stable-abi

 31

What about Kernel Features on which BPF Programs Rely?

Stable ABI is any ‘"user
workflow", whether it uses
BPF or any other kernel
feature’

OSS 2022,
6/21/22

“out-of-tree modules
will have the technical
debt of changing every
time a new kernel
release is out, and so
should out-of-tree bpf
programs.”

Kernel Summit mailing list
6/16/22

P
ho

to
: h

ttp
s:

//l
w

n.
ne

t/A
rti

cl
es

/8
99

18
2/

https://lwn.net/Articles/899182/
https://lwn.net/ml/ksummit-discuss/20220616125128.68151432@gandalf.local.home/

 32

Avoiding ABI Breaks

 33

Method 0: generic syscalls

ioctl()

prctl()

ht
tp

s:
//t

in
yu

rl.
co

m
/b

dd
5y

ey
s

 int prctl(int option, unsigned long arg2, unsigned long arg3,
 unsigned long arg4, unsigned long arg5);

 int ioctl(int fd, unsigned long request, ...);

https://lwn.net/Articles/897202/
https://tinyurl.com/bdd5yeys

 34

Method 1: Unused Function Parameters

● Retain deprecated params: man shmctl

● “Reserved for future use” params: man pid_getfd

● Bitmasks with unused bits: man statx

● Multiple versions of the same syscall: apropos clone

● Some unwrapped syscalls have no glibc implementation.

 35

Method 2: avoid procfs and sysfs changes

“I'd just prefer to have
$NEW_FEATURE
under /proc or /sys.”

“This is ABI, you
can't walk back on
it.”

ht
tp

s:
//p

ix
ab

ay
.c

om
/e

n/
sp

ee
ch

-b
ub

bl
e-

el
lip

se
-s

ha
pe

-a
rr

ow
-2

59
17

/

https://patchwork.kernel.org/project/rcu/patch/20220525221055.1152307-5-frederic@kernel.org/

 36

Summary

● The Linux ABI definition is both fuzzy and controversial.

● Some ABI breaks are unavoidable.

● Y2038 fix will be painful for distros.

● glibc’s thread library NPTL is not suitable for robotics.

● Trouble arises when users rely on developer tools.

● Think carefully when writing userspace applications!

 37

Acknowledgements

Thanks to Akkana Peck and Sarah Newman for their
feedback.

Today, Saturday July 30, at 6 PM in this same room!

https://shallowsky.com/blog/
https://www.socallinuxexpo.org/scale/19x/presentations/live-patching-down-trenches-view

 38

Many full-time-remote Linux jobs with Aurora
Innovation (aurora.tech)

 39

Resources

● Please support LWN!
● “To Save C, We Must Save ABI,” and “

Binary Banshees and Digital Daemons,” JeanHeyd Meneide.

● “It’s About Time,” Mike Crowe, Overload, 28(156):28-30, April
2020. (about pthreads and condition variables)

● Gratian Crisan,
librtpi: Conditional Variables for Real-Time Applications,
Embedded Linux Conference 2020 presentation

● “BPF CO-RE (Compile Once, Run Everywhere),” Andrii
Nakryiko’s blog

https://lwn.net/op/FAQ.lwn#subs
https://thephd.dev/to-save-c-we-must-save-abi-fixing-c-function-abi
https://thephd.dev/binary-banshees-digital-demons-abi-c-c++-help-me-god-please
https://accu.org/journals/overload/28/156/crowe_2770/
https://elinux.org/images/a/ae/Librtpi.pdf
https://nakryiko.com/posts/bpf-portability-and-co-re/

 40

Changing Meanings
 of Names

 41

Behavior of Clocks during Suspension

Should CLOCK_MONOTONIC advance when the system is
suspended?

https://lwn.net/Articles/751482/

 42

Changing the meaning of bootargs

● See bootargs with sudo dmesg | grep -i “command line”

● Should bootarg A means something different alone than in
conjunction with bootarg B?

$ git log -n 1 --grep=consistent – kernel/rcu/tree_nocb.h

● Someone preferred the old behavior:

$ git log --oneline -n 1 --grep="option to opt" – kernel/rcu

 43

“official
version
userspace
tools”?

Ye
s!

YOU
lose!

You broke
my ABI!

in-tree
userspace

tool?

sysfs
or
procfs?

YOU
win!

Ye
s!

No

No

 44

Trace Events are “stable API”

● The list of tracepoints is (mostly) stable.

● The format of trace events (the ABI!) changes.

The difference between a tracepoint and trace event is that a
tracepoint is the "trace_foo()" in the kernel, whereas the trace
event is the data extracted from the tracepoint via the
TRACE_EVENT() macro and listed in the format files in the
tracefs events directory.

https://brendangregg.com/blog/2018-03-22/tcp-tracepoints.html#:~:text=Tracepoints%20are%20considered%20a%20%22stable%20API%2C%22%20so%20their,these%20%22best%20effort%22%20and%20not%20%22set%20in%20stone.%22
https://lwn.net/ml/ksummit-discuss/20220616122634.6e11e58c@gandalf.local.home/

 45

Why kernel tracepoints disappear:
optimizing compilers

#linux-rt IRC chat:

<rostedt> I already get people asking me why a function is
traced in one kernel, but not the other

<rostedt> and I have to tell them it was because gcc decided to
inline it in the other kernel

<rostedt> now we are going to lose tracing, because a function
was modified slightly where gcc can do a tail call?

<rostedt> and tail calls are quite common

 46

The libc⇔kernel ABI boundary

/usr/include

/usr/include/linux/
/usr/include/x86_64/asm

/usr/include/x86_64/bits
/usr/include/x86_64/sys

Linux kernel headers from
linux-libc-deb

glibc headers from
libc6-dev

 47

BPF Programs and
"Compile Once, Run Everywhere"

● Problem: BPF programs rely on internal kernel ABI.

● Solution: BPF Type Format, with debug info exported to
/sys/kernel/btf:
– $ bpftool btf dump file /sys/kernel/btf/battery format c

● CO-RE further has LINUX_KERNEL_VERSION and
CONFIG_FOO_FEATURE macros to help with more complex
changes.

https://nakryiko.com/posts/bpf-portability-and-co-re/
https://www.kernel.org/doc/html/latest/bpf/btf.html

 48

Printk indexing will ease log-monitor maintenance

Solution: export kernel format strings to
/sys/kernel/debug for use by log monitors.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a5c7a39f508a

 49

Method 3: Export info to sysfs (BTF and
printk indexing)

How to access the ABI of the currently running
kernel:

$ ls /sys/kernel/btf

$ bpftool btf dump file /sys/kernel/btf/vfat

$ bpftool btf dump file /sys/kernel/btf/battery format c

Not part of stable ABI!

https://nakryiko.com/posts/bpf-portability-and-co-re/
https://lwn.net/Articles/857148/

 50

Method 4: JIT Compilation

Works great, but expensive:
– requires kernel headers to be updated along with kernel;
– requires compilation with libclang or libgcc;
– slows startup of applications while JIT runs.

 51

Who ever heard of futexes?

https://man7.org/linux/man-pages/man2/futex.2.html

 52

musl has had PI mutexes since 2019

https://musl.libc.org/
https://git.musl-libc.org/cgit/musl/tree/WHATSNEW
https://musl.libc.org/

 53

C language lacks features that make ABI stability
easier

● There are no function overloads or overrides.
– No “name mangling.”

– To safely change a function’s ABI, one must rename it.

● “Encapsulation” methods are limited to static keyword.
– No notion of granular privacy.

– Implementation details tend to “leak” from C programs.

● Maybe “assembly labels” like __attribute__((alias()) are a path
forward?

https://thephd.dev/to-save-c-we-must-save-abi-fixing-c-function-abi

 54

Undefined Behavior with FS Metadata

https://lwn.net/Articles/833696/

 55

Backward compatibility is hard

ht
tp

://
st

ac
ko

ve
rfl

ow
.c

om
/q

ue
st

io
ns

/2
89

86
12

5/
do

ub
le

-c
ur

ve
d-

sh
ap

e

i386

strcpy() &
strdup()

32-bit time

 56

Why not just recompile?

● Source code is unavailable.

● Need to recompile propagates to other libraries/applications.

● Proprietary toolchain is too old to support needed features.

● Code would need new FDA, ISO262 … certification.

● Suppose recompiling is not enough?

 57

ABI-Break Demo

$ git clone https://github.com/chaiken/SCALE2022-demo-code

$ cd SCALE2022-demo-code/C-ABI

$ make right-abi-lib

$ $ make wrong-abi-lib

Makefile main.c

is_negative_64.c

is_negative_128.c

https://github.com/chaiken/SCALE2022-demo-code
https://github.com/chaiken/SCALE2022-demo-code/blob/main/C-ABI/Makefile
https://github.com/chaiken/SCALE2022-demo-code/blob/main/C-ABI/main.c
https://github.com/chaiken/SCALE2022-demo-code/blob/main/C-ABI/is_negative_64.c
https://github.com/chaiken/SCALE2022-demo-code/blob/main/C-ABI/is_negative_128.c

 58

What about the asterix?

https://lkml.org/lkml/2018/12/22/232

 59

How should libc’s respond to kernel ABI Break?

Security, Performance, Stability, POSIX:
pick 23

(forgetting readability, logical consistency . . .)

(c
) C

hr
is

 P
ot

te
r (

20
12

) T
itl

e:
 S

ca
le

s
of

 J
us

tic
e

- w
w

w
.fl

ic
kr

.c
om

/p
ho

to
s/

86
53

04
12

@
N

02
/7

95
32

27
78

4

 60

Debian and Out-of-Tree Kernel Modules

The kernel ABI

An ABI (Application Binary Interface) is an interface
between two software components, considered at the
level of register allocation and memory layout. The ABI
between the kernel and user-space is generally
maintained carefully, and is not a concern here. However,
the ABI between the kernel and its modules is not. In order
to support out-of-tree modules, the kernel version should
be changed when the ABI between the kernel and
modules changes.

https://kernel-team.pages.debian.net/kernel-handbook/ch-versions.html

	Title
	Smash
	Contents
	What is an ABI?
	ABIs are a Contract
	Linux's warranty
	Linus Rant
	Y2038
	IoT and Y2038
	Y2038 and userspace
	Two bad choices regarding 32-bit
	Servers 1, Robots 0
	What Priority Inversion is
	Priority Inheritance
	Glibc does not support PI
	PI-Lock Fix Requires an ABI Break
	The fork
	What is in the ABI? 1
	ABI Game V0
	dmesg, GDB and log monitors
	threading dmesg
	fix GDB
	ABI Game Version 1
	what is in ABI 2?
	Mounting old filesystems
	Filesystem mount failure
	official userspace tools
	What is in ABI? 3
	Are BPF Programs Stable ABI?
	BPF's Stable ABi
	Dialog about out-of-tree BPF programs
	Avoiding ABI Breaks
	Generic syscalls
	Unused parameters
	Avoid procfs and sysfs
	Summary
	Acknowledgements
	Recruiting
	Resources
	Unstable Names of Clocks
	Should clocks advance during suspension?
	Changing the meaning of bootargs
	ABI Game V2
	Trace Events
	Compilers eat tracepoints
	libc-kernel ABI boundary
	BPF, BCC and CO-RE
	printk indexing
	Export info to sysfs
	JIT Compilation
	What are Futexes?
	musl
	C language makes preserving ABI stability trickier
	Filesystem metadata proposed fix
	Ghosts of 1991
	Why not recompile?
	ABI Break Demo
	Linus footnote
	Dilemma of libc's
	Debian and Out-of-tree Kernel Modules

