

Two C++ Tools*

Compiler Explorer and Cpp Insights

Alison Chaiken
alison@she-devel.com

Jan 23, 2020

*with a brief excursion into HW exploits

https://godbolt.org/
https://cppinsights.io/

Overview

● Compiler Explorer and Cpp Insights look under the hood of C++
compilation.
– Both kick off a compiler within the browser and show side-by-side

source and output.

– Both can be locally hosted.

● Compiler Explorer produces assembly output.

● Cpp Insights shows the output from the clang parser (specifically AST
converted back to C++).

Compiler Explorer Basics

● Supports GCC and Clang plus many more.

● Multiarch including many ARM flavors.

● Arbitrary compiler options are supported.

● Settles a lot of arguments about what the compiler actually
does.

● Has a wiki, FAQ.

https://github.com/mattgodbolt/compiler-explorer/wiki
https://github.com/mattgodbolt/compiler-explorer/wiki/FAQ

CE example: the “Spectre” exploit

● Many security holes involving speculation execution by
processors disclosed in recent years.

● Exploits now exist “in the wild.”

● CE illustrates how the “retpoline” fix for C++ indirect branch
speculation works.

https://lwn.net/Articles/795637/

C++ Indirect Branch

https://support.google.com/faqs/answer/7625886

The fix: “retpoline”

● trampoline: intermediary function that execution bounces off

● Takes advantage of the fact that in modern ISAs, “function
return is itself an indirect branch. However, unlike other indirect
branches, its target may be directly cached for exact future
prediction at the point of function call.”[source]

● retpoline strategy: make sure that a do-nothing branch keeps
the processor busy so that the desirable branch has a chance
to look up the correct address.

http://git.infradead.org/users/dwmw2/gcc-retpoline.git/shortlog/refs/heads/gcc-7_2_0-retpoline-20171219
https://support.google.com/faqs/answer/7625886

ASM without a retpoline

With GCC and -mindirect-branch=thunk

Demo: -mindirect-branch=thunk

Clear or set this option to see the code
with or w/o the retpoline.

https://godbolt.org/z/FgioN8

Diff with -mindirect-branch=thunk

Cpp Insights Basics

● Clang only.

● Support for various C++ versions.

 Demo with template and lambda instantiation

https://cppinsights.io/s/9c00074c

How does the preprocessor resolve auto?

Maybe std::pair<T *, bool> result; ?

The result of template instantiation

 The answer:

std::pair<std::__map_iterator<std::__tree_iterator<
std::__value_type<long, int>,
std::__tree_node<std::__value_type<long, int>,
void *> *, long> >, bool> result

Freestanding Lambda Expressions are Classes

class __lambda_19_16
{
 public:
 inline long operator()() const
 { return (random() % static_cast<long>((ELEMNUM - 1))); }
 using retType_19_16 = auto (*)() -> long;
 inline operator retType_19_16 () const noexcept
 { return __invoke; };
 private:
 static inline long __invoke()
 { return (random() % static_cast<long>((ELEMNUM - 1))); }
};

__lambda_19_16 GetRand = __lambda_19_16(__lambda_19_16{});

Example: macros vs. constexpr

Demo: first CppInsights,
then CompilerExplorer

https://cppinsights.io/s/b119f257
https://godbolt.org/z/ft5wjR

Comparison: constexpr vs. C-style macro

● The input code:

#define CUBE(X) ((X) * (X) * (X))

constexpr Complex cubeme(const Complex &x) { return x * x * x; }

with constexpr

Calls sqrt() and
cubeme() function
each 1x.

constexpr code
calls operator*()
2x, for a total of 1
sqrt() and 2
operator*() calls.

C-macro code calls
sqrt() 3x and
operator*() 2x.

Summary

● Compiler Explorer and Cpp Insights make differences among
compilers, compiler options and arches easier to understand.

● Pasting code into them is fast and painless.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

