Technology, Business and Regulation of the "Connected Car"

Alison Chaiken Mentor Embedded Software alison_chaiken@mentor.com John Kenney Toyota InfoTechnology Center jkenney@us.toyota-itc.com

Agenda

Alison:

- Connected vehicle safety and traffic management
- Connection modalities: LTE, 802.11p, SMS, satellite . . . John:
- V2X Protocols and spectrum
- Security and scalability

Alison:

- European and U.S. pilot projects
- Available HW and SW
- Immediate prospects

V2X Terminology

- Vehicle-to-vehicle (V2V)
- Vehicle-to-infrastructure (V2I)
- On Board Unit (US) = ITS Vehicle Station (EU)
- Road Side Unit (US) = ITS Roadside Station (EU)
- Dedicated Short Range Communication (DSRC)
- = automated tolling in E.U.

but

safety messages in U.S.

NXP Multi-Standard Software Defined Radio ICs enable Car2X communication, saving lifes, reducing CO₂

Emergency Vehicle Warning

Hazard Warning

Seeing Around Corners

Car2X use cases address increased safety & prevention of traffic congestion (CO₂ reduction)

ΤΟΥΟΤΑ

"Killer App": Green-light optimal speed advisory

GLOSA will allow drivers to set optimal green-signal speed.

802.11p vs. LTE vs. Satellite and FM

- 802.11p is the only *low-latency* safety channel.
- LTE has the largest install base and is industry-funded.
- Terrestrial and satellite radio, data-over-voice, SMS also:

- 3G (UMTS) already employed in simTD (Germany) and Smart In-Car (Netherlands).
- Telcos are investing heavily in automotive.

Automotive networking needs new protocols in *every* layer

OSI Model			
	Data unit	Layer	Function
Host layers	Data	7. Application	Network process to application
		6. Presentation	Data representation, encryption and decryption, convert machine dependent data to machine independent data
		5. Session	Interhost communication, managing sessions between applications
	Segments	4. Transport	Reliable delivery of packets between points on a network
Media layers	Packet/Datagram	3. Network	Addressing, routing and (not necessarily reliable) delivery of datagrams between points on a network.
	Bit/Frame	2. Data link	A reliable direct point-to-point data connection.
	Bit	1. Physical	A (not necessarily reliable) direct point-to-point data connection.

2.5

•

DSRC Standards Overview

- Necessary for interoperability
- Most standards fairly mature

Comparison 802.11p with AP LAN

- Communication is "Outside the Context of a Basic Service Set" (or OCB, i.e. truly ad hoc)
 - Avoiding setup delay is critical for high mobility "Wireless Access in Vehicular Environments" (WAVE)

DSRC Network & Transport Layers (1609.3)

Two choices in US

- 1.WAVE Short Message Protocol (WSMP)
 - Lightweight compared to Internet protocols (5 byte header)
 - No routing
 - Adequate for many DSRC applications

2.IPv6 + TCP/UDP

•Note: In Europe a "Geo-Networking" protocol is being defined

1609.2 Security Services

Two primary functions:

- 1. Authentication Shows sender is authorized, and that data not altered
- 2. Encryption keeps data secret (need for this limited)

Both use "elliptic curve" cryptographic algorithms

Note: Privacy is key element of V2X security

1609.2 supports pseudonymous certificates – not linked to car

Identifiers (certificates, MAC, etc.) changed every few minutes

SAE J2735 Basic Safety Message (BSM)

ΤΟΥΟΤΑ

We've come a long way

Still to go ... near term

Security Infrastructure

Can I trust you? Get/Renew credentials? Detect misbehavior?

CA Internally segregated to prevent insider attack

Positioning

Scalability

Basic question: will all this still work here?

Aspects of Scalability

- Processing resource
 - Collision threat assessment
 - Per-message Security
- Wireless Channel resource
- Security Infrastructure

Hard to throw money at this one

US DSRC Spectrum: Seven 10 MHz shannels

- Ch. 178:
- Control Channel
- WAVE Service Advertisements are broadcast here, indicating how to access services on other "Service Channels"

Potential new Wi-Fi channels in 5 GHz band

- 802.11n introduced 40 MHz channels
- 802.11ac introducing 80 MHz and 160 MHz channels
- UNI-2 (A, B, C): radar is primary, Dynamic Frequency Selection (DFS) is required by Wi-Fi

Spectrum Sharing Timeline

Key steps:

- Identify sharing technology candidate(s)
- Test rigorously

"Detect-and-vacate" concept

- Key is to avoid colliding with or delaying DSRC packets
- Wi-Fi devices already avoid overlapping transmissions via a "listen-then-talk" protocol
 - Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
- Wi-Fi can detect DSRC device in area via similar function that looks for 10 MHz DSRC packet "signature"
- Before sending anywhere in 5.9 GHz band, listen for DSRC in all 7 channels
 - If no DSRC detected, ok to operate WLAN
 - If DSRC detected, keep out of the band for [TBD] time

entor.com/embeddec

For more information see: https:// See: J. Lansford, J. Kenney, and P. Ecclesine, "Coexistence of Unlicensed mentor keese with for the 5.3/GHz H 3 Band," 4EPP 7 RE201 proposal I-for-u-nif-4 TOYOTA devices.docx

Manufacturers of 802.11p radios

NEC

- NXP/Cohda
- Cisco/Cohda Wireless
- Commsignia (BSD-based)
- Denso
- Delphi
- Savari
- Kapsch
- Siemens
- UNEX
- AutoTalks
- Arada
- DGE
- Componentality

Broadcom

collected by Alexandru Petrescu, cea.fr

25

UNEX DCMA-86P2 miniPCI

RSUs and OBUs are mostly OpenWRT (Linux) routers

Development Computer

Image: "IntelliDrive Technology based Yellow Onset ® Decision Assistance System for Trucks", Sharma et al.

ΤΟΥΟΤΑ

Safety Pilot V2V trial in Ann Arbor MI

- Originally 8/2012-8/2013, but extended.
- 2800 cars, trucks and buses from 7 automakers.
- 64 embedded systems, 300 aftermarke, rest transmit-only.
- NHTSA decision expected in December 2013.
 - "Notice of Proposed Rule Making" likely late 2014

AUGUST 28, 2013 AT 7:07 PM

U.S. extends connected vehicle pilot program in Ann Arbor

DAVID SHEPARDSON AND MELISSA BURDEN COMMENTS 💬

The National Highway Traffic Safety Administration is extending a pilot project in Ann Arbor on connected vehicles by another six months, but said it won't change its timetable for deciding whether to move forward with the new technology.

E.U.'s Safe Intelligent Mobility—Test Area Germany (simTD) Pilot

- Emphasizes V2I.
- Opel; Audi; BMW; Daimler; Ford; VW; Bosch; Conti; Deutsche Telekom, plus govs and unis.
- 120 vehicles and 3 motorcycles plus RSUs.
- Data collection 2012-6/2013, 41K hrs and 1.65M km.
- 2015: 'Cooperative ITS Corridor Rotterdam Frankfurt am Main - Vienna'
 - Features "Roadworks Warning" and "Detection of Traffic Conditions".

Architecture of simTD

Unlike SafetyPilot, includes Central Station and emphasizes V2I.

Near Future

ITS corridor from Vienna to Rotterdam

Austrian Transport Minister Bures signs an agreement with Germany and Netherland: As from 2015, the highway route Rotterdam-Frankfurt/M-Vienna becomes an ITS corridor with state of the art technology.

Conclusions

V2X is a key enabler of vehicle autonomy.

- Enormous potential to improve safety and optimize traffic flow.
 - Burgeoning opportunities for HW, SW, backhaul, analytics . . .
- Extensive government investment in EU and U.S.
- Now is a great time to get involved.

Resources

- simTD, Safety Pilot, Smart In-Car
- ITSSv6, CALM, ETSI, ISO C-ITS
- SAE, IEEE, ISO, IETF, FCC, NHTSA standards
- IETF-ITS mailing list
- Componentality's FlexRoad and Drivity
- Automotive Grade Linux
- Telematics News
- Wired Autopia
- slideshare.net/chaiken

SAE Standards

J2735 Message Set Dictionary

- Defines 15 messages and constituent data elements
- Key messages:
 - Basic Safety Message (V2V safety)
 - Signal Phase and Timing
 - MAP

Typically sent by roadside unit at intersection

J2945 Minimum Performance Requirements (MPR)

- Not yet published expected 2015
- Example content for Basic Safety Message:
 - Message frequency and transmit power
 - Accuracy of sensor data in message (e.g. position, velocity)

DSRC Spectrum Sharing

Wi-Fi has been a tremendous success

US Government supports allowing Wi-Fi to share spectrum in new bands with "primary users" (e.g. radar, satellite)

US FCC considering allowing Wi-Fi to share 5.9 GHz DSRC band

Issued "Notice of Proposed Rule Making" Feb. 2013

Requested comments from stakeholders

IEEE 802.11 "Tiger Team" considering technical sharing solutions

"Detect-and-vacate" option

"Re-channelize and share packet by packet" option

Auto industry wants to ensure no "Harmful Interference" from Wi-Fi. Not yet clear if a solution exists.

Any candidate solution will require rigorous testing

Safety Channel Scalability

Packet Length Sensitivity Control

- Lots of control knobs
- Can be used in combination or alone
- Can be responsive to different stimuli

Reasons why we emphasize message rate:

- Predictable impact independent of topology
- Maintain connectivity at distances of interest
- Fine grained control
- Large dynamic range (no obvious minimum)
- Toyota ITC's LIMERIC algorithm is under investigation in US

See: G. Appsal, E. Kenney, and C. Rohrs, "LIMERIC: A Linear Adaptive Message Rate Control Algorithm for DSRC Congestion Control, "IEEE Trans Vehicular Technology, Vol. 62, Issue 9, pp. 4182-4197, November 2013

DSRC Standards Overview

- Necessary for interoperability
- Most standards fairly mature

See: J. Kenney, "DSRC Standards in the United States", Proc. IEEE, July 2011, Vol. 99, No. 7, pp. 1162-1182

IEEE 1609.4: Multi-Channel Operation

- Objective: Multiplex one radio effectively among multiple channels
- Approach: use time division
- Optional: Not used for safety channel in US

Componentality: open-source 802.11p stack: the bluez of DSRC?

Typical Set Of Technologies

Source: "Using Open Source Solutions for V2V and V2I Communications," Automotive Grade Linux webinar

802.11p (WAVE) vs. other Comms Modes

- Lower-overhead protocol for safety messages.
- No access point (AP) and no basic service set (BSS)
 - -Too much delay for moving vehicles.
 - Lower latency than 802.11a/b/g/n, LTE or satellite.
- Message priorities 0-7.
- Half-width channels; always *ad hoc*.
- Up to 33 dBm (\sim 1 km) in E.U. and 44 dBm in U.S.
- No upstream Linux driver.

V2V Model Deployment Safety Applications

OEM/Applications	Ford	GM	Honda	Mercedes	Toyota	Hyundai- Kia	Nissan	VW-Audi
EEBL	х	х	х	х	х			х
FCW	х	х	х	х		х	х	х
BSW / LCW	x	х	х	х	х	х	X (BSW)	
DNPW	x	х	х					
ІМА	х	х	х	х	х			х
LTA							Х	

EEBL: Emergency Electronic Brake Lights FCW: Forward Collision Warning BSW/LCW: Blind Spot Warning/Lane Change Warning

DNPW: Do Not Pass Warning IMA: Intersection Movement Assist LTA: Left Turn Assist

U.S. Department of Transportation

This is US Government work and may be copied or distributed without permission

Source: M. Lukuc, Connected Vehicle Public Meeting

Why V2V needs low latency

Target Scenarios for Forward Crash Warning (FCW) & Lane Change Warning (LCW)

Source: J. Harding, Connected Vehicle Public Meeting

Dual protocol stacks of simTD

Based on ETSI ITS G5 plus GeoNetworking.

Management

Applications

From Automotive Internetworking, courtesy M. Bechler, BMW.

simTD's "vehicle stations"

Linux router + Windows XP Host

Ref.: H. Stübing et al., IEEE Comm. 148 (2010).

Linux in V2I: Advanced Transportation Controller (ATC)

Applications: GLOSA; Traffic Surveillance; Ramp Meter; Dynamic Message Signs; Weather monitor; Weigh stations; Rail intersections; Lane usage controls; Roadworks warning . . .

Source: Institute for Traffic Engineers

Internet Engineering Task Force (IETF) work on Geonetworking and ITS

- 3 draft standards in preparation
 - Geonetworking (submitted)
 - 'Scenarios and Requirements for IP in Intelligent Transportation Systems' (submitted)
 - IPv6 over 802.11p (particular GENIVI interest)
 - V2X (with MANET working group of IETF?)
- Info: https://www.ietf.org/mailman/listinfo/its
- chief organizer: Alex Petrescu of CEA
- in contact with GENIVI Networking Expert Group

Special cases

- Transit-service vehicles
- Emergency responders
- Over-the-air software updates
- Agricultural equipment
- Fleet vehicles
- Rental cars
- ... and many more.

Safety Pilot's transit vehicle

Source: S. Mortensen, Connected Vehicle Public Meeting

Internet Engineering Task Force Internet-Draft Intended status: Informational Expires: March 23, 2014 Georgios Karagiannis University of Twente Geert Heijenk University of Twente Andreas Festag NEC Germany Alexandru Petrescu CEA September 23, 2013

Internet-wide Geo-networking Problem Statement draft-karagiannis-problem-statement-geonetworking-00

Abstract

This document describes the need of specifying Internet-wide location-aware forwarding IETF-based protocol solutions that provide packet routing using geographical positions for packet transport.

Safety Pilot participants

Roadside:

Arada, Kapsch, ITRI,.Cohda/Cisco, Savari

In-vehicle:

AutoTalks, Cohda, Denso, DGE, ITRI, Savari, Arada

Aftermarket Safety Devices: Cohda/Delphi, Cohda/Visteon , Denso, Kapsch

Automakers: GM, Ford, Toyota, Honda, VW, Daimler, Hyundai and Nissan

Resources

ITSSv6

https://project.inria.fr/itssv6/users/

CALM

http://calm.its-standards.info/

• SAE, IEEE, ISO, IETF, FCC, NHTSA

standards

- simTD
- Safety Pilot dot.gov/presentations.htm

- IETF-ITS mailing list https://www.ietf.org/mailman/listinfo/its
- Componentality's FlexRoad and

http://componentality.com/ Drivity http://componentality.com/flexroad/

http://componentality.com/drivity/

- Telematicsnews.info/
- Wired Autopia/
- slidesharemet/chaiken
- Sman/twww.ecial.com/smart-in-car-trial-car-data-real-time-accessible-to-improve-traffic-flow-and-increase-traffic-safety/
- ETSI,//SO.C.-ITS.
- Automotive Grade Linux
 http://www.linuxfoundation.org/collaborate/workgroups/automotive-grade-linux

