
systemd, the next-generation Linux system manager

LISA15
Nov. 9, 2015

Alison Chaiken
alison@she-devel.com

Latest version with fixes at http://she-devel.com/LISA15/LISA15_systemd.pdf

http://she-devel.com/LISA15/LISA15_systemd.pdf

2

Topics

● Introduction: set up test environment.

● Basic concepts and tools

● Deeper dive into units, services and targets

● Dependencies and service activation

● Security and resource controls

● Performance tuning and failure analysis

S
tu

ar
t

C
ha

lm
e

rs

https://www.flickr.com/photos/gertcha/
https://flic.kr/p/bvyRDe

3

Key to examples

● This font is for regular explanatory text and comments.

● Blue font is for hyperlinks.

● echo “green font for code snippets”

– Some are OK on localhost, others only in container or VM!

https://en.wikipedia.org/wiki/Hyperlink

4

Quiz!

1 What is the most-deployed Linux init system, by number of devices?

a systemd;

b sysVinit;

c upstart;

d other.

2 systemd exits shortly after userspace comes up. (T/F)

3 systemd runs as

a one giant application;

b many threads of execution;

c a collection of processes;

d a virtual machine.

5

Quiz, p. 2

1 The license of systemd is:

a GPLv2;

b GPLv3;

c permissive;

d proprietary.

2 systemd runs on Linux as well as BSD and MacOS (T/F).

3 systemd's first distro release was:

a Fedora in 2011;

b Debian in 2014;

c RHEL in 2015.

6

Basic Concepts

Philosophy of systemd

Extract duplicate functionality from daemons and move it to
systemd core or kernel.

Replace init.d scripts with declarative config files.

Expose newer kernel APIs to userspace via a simple interface.

Control behavior of applications via unit files rather than with
code changes.

http://commons.wikimedia.org/wiki/File:Aristoteles_Louvre.jpg

● modular;
● asynchronous and concurrent;
● described by declarative sets of properties;
● bundled with analysis tools and tests;
● features a fully language-agnostic API.

systemd is:

One daemon to rule them all

xinetd: a daemon to lazily launch internet
services when activity is detected on an
AF_INET socket

systemd: a daemon to lazily launch any
system service when activity is detected on
an AF_UNIX socket (oversimplification)

How to RTFM Most Effectively

● Get the source:

git clone git@github.com:systemd/systemd.git

● Provides a single grep-able directory with all man pages.

● As a last resort, grep the source to find the origin of an error message.

● The catch: must upload SSH key to github to clone from there.

Setup Test
Environment

12

Exercise 0: Install a container or VM in which to
test systemd

Either:

− boot up your favorite Linux container or VM;

− or follow instructions to create a Debian or Fedora container;

− or copy the Debian or Fedora container on the shared USB
stick

− or bring a device (e.g. RPi) on which to run Linux.

Any systemd installation >= 208 should work fine:

ps -p 1; systemctl --version

13

Configure container or VM for easy testing

● Create a regular user (not root) and add to /etc/sudoers.

● Add the user to the systemd-journal group.

● If possible, install cups and nmap in the container/VM/device or
on localhost.

● If possible, install graphviz on localhost.

14

(optional) systemd-nspawn lightning course

● systemd-nspawn manages systemd's native container type

● Basically a namespaced chroot that reuses host's kernel.

● Start console session for container:

– sudo systemd-nspawn -D </path/to/container/>

● 'Boot' the container:

– sudo systemd-nspawn -bD </path/to/container>

● Monitor and control from host:

– machinectl list and machinectl status (not available in older versions)

– sudo machinectl reboot <container name>

– machinectl list-images

Preliminaries

Get started with systemctl and journalctl

● addgroup $USER systemd-journal for access.

● systemctl status; systemctl status ssh

● journalctl -xn; journalctl -u ssh

● systemctl --failed; journalctl -p err

● sudo systemctl start cups (or restart)

● systemctl show ntp

● sudo systemctl poweroff or sudo systemctl reboot

Units and Services

Complexity arising from many similar small units

C
ou

rt
e

sy
 B

ill
 W

ar
d

https://secure.flickr.com/photos/billward/
https://secure.flickr.com/photos/billward/

init.d scripts ÞÞ systemd units

● Unit's action and parameters: ExecStart=

● Dependencies: Before=, After=, Requires=, Conflicts=
and Wants=.

● Default dependencies:

– Requires= and After= on basic.target;

– Conflicts= and Before= on shutdown.target.

● Types of unit files: service, socket, device, mount,
scope, slice, automount, swap, target, path, timer,
snapshot

● See 'man systemd.unit' or freedesktop.org

http://www.freedesktop.org/software/systemd/man/systemd.unit.html

Anatomy of a Unit File

● ExecStart can point to any executable, including a shell script.

● Unit files typically include a [Unit] section and a [Service] section.

● An [Install] section determines the target with which a unit is
associated.

● Try: systemctl cat ssh or systemctl show ssh

https://upload.wikimedia.org/wikipedia/commons/2/21/Man_Belon.jpg

21

Precedence of unit files

● /lib/systemd/system/: upstream defaults for system-
wide services

● /etc/systemd/system/: local customizations by
override and extension

● 'drop-ins' are extension fragments akin to those in
/etc/yum.repos.d/ or /etc/apt.conf.d/.

● Try: systemd-delta

22

Exercise 1: create a HelloWorld service

1 Create HelloWorld.service in your container that prints “Hello
World” into the systemd journal.

2 Situate it in the filesystem where systemd can find it.

3 Start the service using systemctl.

4 Check the status of your service. Where has “Hello, world”
output appeared?

23

Solution: simple HelloWorld.service

1 With a text editor, create helloworld.sh:
#!/bin/bash
echo “Hello World!”

2 Copy the script into your container's filesystem:
chmod +x helloworld.sh
cp helloworld.sh /var/lib/machines/debian/usr/local/bin/

3 With a text editor, create HelloWorld.service:
[Unit]
Description=Hello World Service
Documentation=
[Service]
ExecStart=/usr/local/bin/helloworld.sh

4 Copy the unit file into the container's filesystem:
cp HelloWorld.service /var/lib/machines/debian/etc/systemd/system/
(or, on your localhost, cp HelloWorld.service /etc/systemd/system/)

5 Boot the container, then load and run the unit:
sudo systemd-nspawn -bD /var/lib/machines/debian
[inside container] sudo systemctl start HelloWorld
[inside container] systemctl status HelloWorld
[inside container]journalctl -u HelloWorld

Targets
vs.

Runlevels

sysVinit runlevels ≈ systemd targets

● Targets are synchronization points.

● Check /lib/systemd/system/runlevel?.target symlinks:
 multi-user.target (runlevel 3 == text session)

graphical.target (runlevel 5 == graphical session)

● Select boot-target :

– via /etc/systemd/system/default.target symlink;

– by appending systemd.unit=<target> to bootargs.

● Helpful diagram: “man 7 bootup”

file:///home/alison/gitsrc/systemd/man/bootup.html
http://commons.wikimedia.org/wiki/File:Bullseye_dart.JPG

Target Basics

● Service S will be started as part of Target T iff S.service file is symlinked in the
directory /etc/systemd/system/T.wants.

● If S's unit file contains WantedBy=T, then

systemctl enable S

will create a symlink to S.service in /etc/systemd/system/T.wants

● Similarly

systemctl disable S

removes the symlink.

● To blacklist a service

systemctl mask S.service

● 'rm' or 'ln' can manage the services: there is no binary 'registry' DB.

Exercise 2: Make HelloWorld.service run at Boot

● Modify HelloWorld.service.

● Enable it.

● Reboot and verify that the service is now started.

● Disable the service, reboot and verify that service is not
started.

Solution: make HelloWorld.Service run at boot

● Append a “WantedBy” line to a new [Install] section in the unit:
[Install]
WantedBy=multi-user.target

● Boot container and enable the unit:

sudo systemd-nspawn -bD /var/lib/machines/debian
[inside container] sudo systemctl enable HelloWorld
[inside container] ls /etc/systemd/system/multi-user.target.wants

● Reboot and check status:
[inside container] sudo systemctl reboot
[inside container] systemctl status HelloWorld

● Disable the service, reboot and check again:
[inside container] sudo systemctl disable HelloWorld [fails if the file is cp'ed, not ln'ed]
[inside container] sudo systemctl reboot
[inside container] systemctl status HelloWorld

systemd's dependencies

Demo: Generate ASCII Dependency Graphs

Examples:

 systemctl list-dependencies basic.target

 systemctl list-dependencies --after cups.socket

 systemctl list-dependencies --before multi-user.target

Generate dependency metadata:

 systemd-analyze dot basic.target > basic.dot

Generate graph image:

 dot -Tsvg basic.dot -o basic.svg

View graph:

 eog basic.svg (or view basic.svg with any web browser)

Note: dot is in graphviz package; eog is in eponymous one.

Generate SVG Dependency Graph

http://www.graphviz.org/

systemd bootup is ordered, but not deterministic

● Services start other services they 'Want' or 'Require'.

● Services stop if other services they 'Require' stop, but not if
services they 'Want' stop.

● 'After' means 'start after another service starts'.

– Not 'start after another service is fully initialized' or finished.

– 'Before' is similar.

● To express more nuanced sequence, use Path, PID or Socket-
based signalling. Examples:

– ConditionPathExists= in unit file listing /var/run/*.pid

– systemd-notify messages to socket

FAQ

33

Simple targets
vs.

runlevels

Not all targets are 'runlevels'

● Targets can simply be collections of services all started at once.

● A runlevel is a special target that is reached only when all
wanted services reach completion.

● RTFM: man systemd.special

● New simple targets = new unit files + directories with symlinks.

● New runlevels require new code.

co
ur

te
sy

 P
ie

rr
e-

Y
ve

s
B

ea
ud

o
in

FAQ

https://commons.wikimedia.org/wiki/Category:Synchronized_swimmers_from_Japan#/media/File:Open_Make_Up_For_Ever_2013_-_Team_-_Japan_-_01.jpg

FAQ: how do I create a new runlevel?

● You don't want to.

– Doing so involves writing a bunch of C/C++ code.

● Creating a new runlevel is possible.

– GENIVI automotive Linux project has done it.

– Code is available from

git://git.projects.genivi.org/lifecycle/node-startup-controller.git

– Webcast slides and audio

– Use case: a LAN with many dumb no-OS MCUs.

● Is your use case truly so different from those considered by
freedesktop.org?

http://genivi.org/
http://www.genivi.org/sites/default/files/GENIVI%20Lifecycle%20Webcast.pdf
http://www.genivi.org/sites/default/files/GENIVI_Technical_Webcast%20Lifecycle-20140130.mp4

From GENIVI Lifecycle Management webcast slides; the source code

http://www.genivi.org/genivi-webcast-archive
http://www.genivi.org/sites/default/files/GENIVI%20Lifecycle%20Webcast.pdf
git://git.projects.genivi.org/lifecycle/node-startup-controller.git
http://www.genivi.org/sites/default/files/GENIVI%20Lifecycle%20Webcast.pdf

37

Unit file hierarchy
 and precedence

38

system and user system instances

● systemd's system instance manages singleton daemons that
provide systemwide services;

● systemd's user instance manages per-user services.

● Try:

– systemctl --user status

● Discuss: why does systemctl --user status fail?

● Configuration files are in $HOME, not /etc/systemd.

● User instance only runs if systemd is built with PAM feature:

systemctl --version | grep PAM

39

system and user units

● Organized into system and user units.

● /lib/systemd/system: systemd upstream's defaults for
system-wide services

● /usr/lib/systemd/user/: systemd upstream's defaults for
per-user services

● $HOME/.local/share/systemd/user/ for user-installed
units

● 'drop-ins' are run-time extensions (man systemd.unit) for
either user or system instances.

40

Precedence of system unit files

Tip: create unit files for new services in /etc. Drop-ins are for override.

lowest;
from upstream

optional;
static

optional;
dynamically generated

alternatives that
produce the same result

highest; optional;
static

in /etc/systemd/system/<unit-name>.d/foo.conf

in /etc/systemd/system/foo.service

in /run/systemd/system/foo.service

in /lib/systemd/system/foo.service

man systemd.unit

41

Exercise 3:Understanding unit file hierarchy

● Display path and text of currently loaded unit file.

systemctl cat systemd-logind

● Copy the currently loaded unit to a position higher in
the unit-file hierarchy.

sudo cp /lib/systemd/system/systemd-logind.service /etc/systemd/system

● Try: systemctl cat systemd-logind

– Is the result what you expected? Why?

● Another clue:

systemd-delta

42

Unit file hierarchy puzzle: the answer

● sudo systemctl daemon-reload

● systemctl cat systemd-logind

● Clean-up. (Why is this important?)

– sudo rm /etc/systemd/system/systemd-logind.service

● And repeat sudo systemctl daemon-reload

FAQ

Understanding socket-based
activation

and Upstart

Serial Linked list Fully parallel

Socket-based activation is key to systemd's fast boot

Demo:control cups via socket-based activation

● Check if cups is running and stop it:
systemctl status cups.service
sudo systemctl stop cups.service
systemctl status cups.service

● What is cups.socket?
systemctl cat cups.socket
systemctl status cups.socket

● What is the difference between /lib/systemd/system/cups.socket
and /var/run/cups/cups.sock?

● cups.sock is a normal AF_UNIX socket, so
echo “HTTP POST” | ncat -U /var/run/cups/cups.socket

● Now check cups.service:
systemctl status cups.service

Tune and control
your configuration

with systemd

systemd intuitively exposes kernel interfaces

● Including Capabilities, Watchdog, Cgroups and kdbus
('coming attraction')

● Kernel features are configurable via systemd's unit files.

● Encourages creation of system-wide policies via unit
templates.

● man 7 capabilities

systemd and cgroups

● cgroups were difficult to config prior to advent of systemd tools.

● cgroups are a kernel-level mechanism for allocating resources:
storage, memory, CPU and network.

● slices are groups of services whose resources are managed
jointly.

● systemd scopes are resultant groups of processes.

● Sysadmins can set BlockIOWeight, IOSchedulingPriority,
OOMScoreAdjust, CPUShares, MemoryLimit, Nice …

● Reference: kernel's documentation and 'man systemd.resource-
control'

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

From GENIVI Lifecycle Management webcast slides (GENIVI automotive Linux consortium)

http://www.genivi.org/genivi-webcast-archive
http://www.genivi.org/sites/default/files/GENIVI%20Lifecycle%20Webcast.pdf

check cgroup configuration on your current system

● systemd-cgls

● systemd-cgtop

● mount | grep cgroup shows which 'controllers' are available

● NOTE:

Which controllers are available depends on the kernel config:

grep CGROUP /boot/config*

● NOTE:

unless "CPUAccounting=1", "MemoryAccounting=1" and
"BlockIOAccounting=1" are enabled for the services in question, no
resource accounting will be available for system services and the data
shown by systemd-cgtop will be incomplete.

Exercise 4: set 'niceness' of Firefox

● Create a service that starts Firefox with per-user settings in firefox.slice.

● Set the 'niceness' of Firefox.

● Check that the process runs at the 'niceness' you've set.

● Hints:

– You may need to run 'xhost +localhost' on localhost.

– Possibly add 'Environment=DISPLAY=:0' to your unit file.

– man systemd.exec

Solution: nice Firefox

● Create a firefox.service file in /usr/lib/systemd/user:
[Unit]
Description=Firefox web browser

[Service]
Environment=DISPLAY=:0
ExecStart=/usr/bin/firefox (might be /bin/firefox)
Nice=12
Slice=firefox.slice (optional but worth trying to see its effect)

● systemctl --user start firefox

● systemd-cgls

● Employ ps or top to check 'niceness'.

● Note that you now need
systemctl --user enable firefox
systemctl --user daemon-reload
journalctl –user-unit=firefox (not journalctl --user though)

systemd and security:
granular encapsulationvia kernel's capabilities

● CapabilityBoundingSet at boot; capability dropping possible

● PrivateTmp, PrivateDevices, PrivateNetwork, JoinNamespaces

● ProtectSystem (/usr and /etc), ProtectHome

● ReadOnlyDirectories, InaccessibleDirectories

● Set system-wide security policies via /etc/systemd/*conf files

● References: LWN on “Inheriting capabilities” and man
capabilities

http://ftp.nluug.nl/video/nluug/2014-11-20_nj14/zaal-2/5_Lennart_Poettering_-_Systemd.webm
https://lwn.net/Articles/632520/
https://commons.wikimedia.org/wiki/File:Rusty_Lock_DerHHO_2.JPG

Exercise 6: control file access of firefox.service

● Add 'CapabilityBoundingSet=' to firefox.service and restart.
– Investigate with getpcaps, journalctl and systemctl. (getpcaps

may not be in your default $PATH.)

● Replace CapabilityBoundingSet directive with
'InaccessibleDirectories=/home'.

● Move to /etc/systemd/system and restart.

– Try to read files in /home with the browser after starting it from
'sudo -i'.

– Explain the behavior.

● Don't forget 'systemctl daemon-reload' and '--user'.

Solution: limiting Firefox's access

● Starting firefox.service as jack, from /etc/systemd/user, with
CapabilityBoundingSet=

[jack@f22container ~]$ systemctl --user daemon-reload

[jack@f22container ~]$ systemctl --user start firefox

[jack@f22container ~]$ systemctl --user --failed

 UNIT LOAD ACTIVE SUB DESCRIPTION

● firefox.service loaded failed failed Firefox web browser

[jack@f22container ~]$ journalctl --user -p err

Sep 19 16:44:03 f22container systemd[300]: Failed at step
CAPABILITIES spawning /bin/firefox: Operation not permitted

Solution: limiting Firefox's access

● Starting firefox.service with sudo from /etc/systemd/system, without
'CapabilityBoundingSet=',

bash-4.3# getpcaps `pidof firefox`

Capabilities for `1923': =
cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,ca
p_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_ra
w,cap_ipc_owner,cap_sys_chroot,cap_sys_ptrace,cap_sys_admin,cap_sys_boot,cap_sys_nice,ca
p_sys_resource,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap
_setfcap+ep

● With 'CapabilityBoundingSet=',
bash-4.3# systemctl daemon-reload

bash-4.3# getpcaps `pidof firefox`

Capabilities for `2036': =

● A bit simpler than SELinux!

Solution: limit Firefox's access

● Starting firefox.service as root from /etc/systemd/system and
without 'InaccessibleDirectories=/home',

● Starting firefox.service as root from /etc/systemd/system and
with 'InaccessibleDirectories=/home',

systemd troubleshooting

ProTips!

When all else fails, consult the files in /etc/systemd/*.conf.

Dump all potential configuration items:
/lib/systemd/systemd --dump-configuration-items

Most useful man pages:
man systemd.exec
man systemd.unit
man systemd.service

Consult systemd mailing list archives and wiki.

http://lists.freedesktop.org/archives/systemd-devel/
http://www.freedesktop.org/wiki/Software/systemd/

A bit more about the systemd journal

● In binary format, but has a simple UI that beats 'grep' and 'awk'.

● Is fully compatible with parallel syslog output.

● Can push the journal to a remote via unit file configuration.

● Can be automatically cryptographically signed.

● Is, with udev, one of the required systemd components.

https://en.wikipedia.org/wiki/File:R%C3%B6merwatchturm.JPG

● Test out new units by trying them:
– systemd-analyze verify <new unit>
– in /run
– in *.conf.d directory
– via bootargs

● Do not ever modify files in /lib/systemd.
– Restore defaults by removing broken units with higher

precedence.

● Services linked into basic.target.wants (≈runlevel 1) that won't
work until graphical.target (runlevel 5) will start properly if their
dependencies are correctly stated.

systemd prevents self-injury!

http://www.cyclelicio.us/2010/crazy-bike-signs-in-los-altos-hills/

systemd's watchdog timer support

● Provides simple configuration of soft or hard watchdogs.

● RuntimeWatchdogSec sets a timer for petting the dog.

● ShutdownWatchdogSec sets a timer to force reboot if
shutdown hangs.

62

https://en.wikipedia.org/wiki/File:Dark_Mack_New_Logo.png

'systemd-analyze critical-chain':
Why did that unit take so long to start?

Note: ntp was started by SysVinit!!

Final quiz

● T/F: systemd is best characterized as an init system.

● Which of the following is not a recommended way to customize systemd?

a Edit /etc/systemd/*.conf files;

b Edit the files in /lib/systemd/system;

c Edit /etc/systemd/<unit-name.d>/*.conf files;

d Employ “systemctl enable” and “systemctl disable”.

● Which of the following is not a real systemd component?

systemd-nspawn, systemd-logind, packagectl, systemd-delta

● Which of the following is true? The systemd journal:

a is incompatible with syslog;

b can be viewed with systemd-journalviewer or a browser;

c can be cryptographically signed automatically;

d is configured via an XML file.

● T/F: systemd services are always started via socket-based activation.

Summary

● systemd is easier to configure and customize than you fear.

● Most users will not notice (or have not noticed).

● There are real difficulties but

– systemd is still relatively new;

– system administration is complex.

https://www.flickr.com/photos/jym/15536370469/

Additional Resources

● Man pages are part of systemd git repo.

● freedesktop.org: systemd mailing list archives and wiki; Pöttering's blog

● #systemd on Freenode IRC

● ➟At wayback machine: “Booting up” articles

● systemd.conf YouTube channel and slides

● Neil Brown series at LWN on 'systemd programming' (design of NFS units)

● ➟Fedora's SysVinit to systemd cheatsheet

● LWN on “How Debian managed the systemd transition ”

● Linux Action Show interview with Lennart Poettering

● “Who wrote systemd?” statistics

● Jordan Hubbard of FreeBSD describes launchd porting plans (at 40 mins.)

git://anongit.freedesktop.org/systemd/systemd
http://lists.freedesktop.org/archives/systemd-devel/
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/
https://web.archive.org/web/20131206191347/http://www.h-online.com/open/features/Booting-up-Tools-and-tips-for-systemd-1570630.html
https://www.youtube.com/channel/UCvq_RgZp3kljp9X8Io9Z1DA
https://drive.google.com/open?id=0B-UWEwsUY5PJZXQ2emdsVXJ4OTA
http://lwn.net/Articles/584175/
https://fedoraproject.org/wiki/SysVinit_to_Systemd_Cheatsheet
https://lwn.net/Articles/657345/
http://www.jupiterbroadcasting.com/73122/lennarts-linux-revolution-las-342/
http://enotty.pipebreaker.pl/2014/12/30/who-wrote-systemd/
http://www.bsdnow.tv/episodes/2015_10_28-Whats_next_for_BSD

Acknowledgements

ht
tp

s:
//

co
m

m
on

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/F
ile

:P
ro

n
am

-m
ud

ra
.p

ng
#

/m
ed

ia
/F

ile
:P

ro
na

m
-m

ud
ra

.p
ng

• twb and ohsix on #systemd on freenode IRC

• Zbigniew Jędrzejewski-Szmek on systemd-devel

• Kevin Dankwardt for help with organizing class

• USENIX/LISA for invitation.

Course evaluation

● The course was too introductory/too advanced.

● The amount of lecture versus exercises was too
high/too low.

● The course content is relevant to my work: T/F.

● I now understand systemd better: T/F.

● I know how to find more information about systemd:
T/F.

Email to alison@she-devel.com

69

system and user units derive from D-Bus

● systemd cooperates with D-Bus to provide:

– singleton daemons that provide systemwide services;

– per-user services.

● Try:

– busctl --system | head

– busctl --user | head

● Same information is accessible via qdbus or gdbus.

● Reference: “Control your Linux desktop with D-Bus”

http://www.linuxjournal.com/article/10455

Exercise: control firefox's memory utilization

● The following works on systems where localhost's kernel is compiled with CONFIG_MEMCG=y.

– Don't forget that containers share the kernel with localhost.

● Create a unit file that will start firefox.

● Turn on memory accounting.

● Check firefox's memory accounting via systemd-cgtop.

● Add a MemoryLimit field to the unit file.

● Restart your service and check the memory utilization again: top or ps -o slice,vsize,rss,%mem -C firefox.

● Hints: you may need to run 'xhost +localhost' on localhost and add

'Environment=DISPLAY=:0' to your unit file.

Firefox and cgroups solution

● firefox.service:

[Unit]
Description=Firefox web browser

[Service]
Environment=DISPLAY=:0
ExecStart=/usr/bin/firefox (or /bin/firefox)
MemoryAccounting=true
MemoryLimit=10M

● sudo mv firefox.service /etc/systemd/user

● systemctl --user start firefox

● systemd-cgtop and ps -o slice,vsize,rss,%mem -C firefox

● Remove MemoryLimit and compare.

Taxonomy of systemd tools

● Analogous to 'git'.

● 'Porcelain' generalized tools: 'ls /bin/*ctl'

– journalctl, systemctl, machinectl, busctl, loginctl, networkctl

– Man pages, useful in bash scripts.

● 'Plumbing' components: 'find /lib/systemd -executable -type f'

– A few lack man pages; try '--help'.

– Tools that are invoked by other tools.

– May be useful in testing.

● Domain-specific: 'ls /usr/bin/systemd-*'

"20060513 toolbox" by Per Erik Strandberg sv:User:PER9000 - Own work.
Licensed under CC BY-SA 2.5 via Commons -
https://commons.wikimedia.org/wiki/File:20060513_toolbox.jpg#/media/File:20060513_toolbox.jpg

https://en.wikipedia.org/wiki/Toolbox#/media/File:20060513_toolbox.jpg

	Slide 1
	Topics
	Key to examples
	Quiz 1, page 1
	Quiz 1, p. 2
	Basic Concepts section head
	Philosophy of systemd
	Properties of systemd
	systemd vs. xinetd
	systemd documentation and sources
	Test environment setup
	Install a container for testing
	Configure container or VM for testing
	systemd-nspawn
	Preliminaries section head
	systemctl and journalctl
	Units and Services section head
	Lego photo by Bill Ward
	init.d scripts vs. systemd units
	Anatomy of a Unit File
	Precedence of unit files
	Exercise 1: HelloWorld.service
	HelloWorld.service solution
	Targets vs. Runlevels section head
	Intro to targets
	Target basic
	Exercise 2: autostart HelloWorld.service at boot
	Solution: make HelloWorld run at boot
	Dependencies section header
	Listing dependencies
	Dependency graphs
	Ordered but deterministic
	Simple targets vs. runlevels
	Not all targets are runlevels
	Creating a new runlevel
	GENIVI's creation of new runlevels
	Unit file hierarchy section head
	system and user systemd instances
	system and user units
	Precedence of system unit files: graphic
	Exercise 3: unit file hierarchy
	Exercise 3 unit file hierarchy solution
	Socket-based activation section header
	Socket-based activation graphic from Poettering
	cups.socket demo
	Tune systemd section header
	systemd and kernel interfaces
	systemd and cgroups
	GENIVI's cgroup configuration
	Inspect cgroup config
	Exercise 4: niceness of Firefox
	Firefox niceness exercise solution
	security and capabilities
	Exercise 6: Firefox capabilities
	Solution to exercise 6: Firefox and capabilities
	More about Firefox and capabilities
	Firefox and InaccessibleDirectories
	systemd troubleshooting
	Debugging tips
	More about systemd journal
	systemd tries to be foolproof
	systemd and watchdogs
	systemd-analyze critical-chain
	Final quiz
	Summary
	Additional resources
	Acknowledgements
	Evaluation
	D-Bus and systemd
	Exercise: cgroup memory controller
	Memory cgroup controller solution
	Taxonomy of systemd tools

